Finite volume Hermite WENO schemes for solving the Hamilton-Jacobi equations II: Unstructured meshes

نویسندگان

  • Jun Zhu
  • Jianxian Qiu
چکیده

Abstract. In this paper, we present a new type of Hermite weighted essentially nonoscillatory (HWENO) schemes for solving the Hamilton-Jacobi equations on the finite volume framework. The cell averages of the function and its first one (in one dimension) or two (in two dimensions) derivative values are together evolved via time approaching and used in the reconstructions. And the major advantages of the new HWENO schemes are their compactness in the spacial field, purely on the finite volume framework and only one set of small stencils is used for different type of the polynomial reconstructions. Extensive numerical tests are performed to illustrate the capability of the methodologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermite WENO schemes for Hamilton-Jacobi equations on unstructured meshes

Article history: Received 1 November 2012 Received in revised form 16 July 2013 Accepted 23 July 2013 Available online 2 August 2013

متن کامل

Hermite WENO schemes for Hamilton–Jacobi equations

In this paper, a class of weighted essentially non-oscillatory (WENO) schemes based on Hermite polynomials, termed HWENO (Hermite WENO) schemes, for solving Hamilton–Jacobi equations is presented. The idea of the reconstruction in the HWENO schemes comes from the original WENO schemes, however both the function and its first derivative values are evolved in time and used in the reconstruction, ...

متن کامل

High-Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes

In this paper we construct high-order weighted essentially nonoscillatory (WENO) schemes for solving the nonlinear Hamilton–Jacobi equations on two-dimensional unstructured meshes. The main ideas are nodal based approximations, the usage of monotone Hamiltonians as building blocks on unstructured meshes, nonlinear weights using smooth indicators of second and higher derivatives, and a strategy ...

متن کامل

WLS-ENO: Weighted-least-squares based essentially non-oscillatory schemes for finite volume methods on unstructured meshes

ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes are widely used high-order schemes for solving partial differential equations (PDEs), especially hyperbolic conservation laws with piecewise smooth solutions. For structured meshes, these techniques can achieve high order accuracy for smooth functions while being non-oscillatory near discontinuities. For u...

متن کامل

A Robust Reconstruction for Unstructured WENO Schemes

The weighted essentially non-oscillatory (WENO) schemes are a popular class of high order numerical methods for hyperbolic partial differential equations (PDEs). While WENO schemes on structured meshes are quite mature, the development of finite volume WENO schemes on unstructured meshes is more difficult. A major difficulty is how to design a robust WENO reconstruction procedure to deal with d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2014